Fast LLL-type lattice reduction

نویسنده

  • Claus-Peter Schnorr
چکیده

We modify the concept of LLL-reduction of lattice bases in the sense of Lenstra, Lenstra, Lovász [LLL82] towards a faster reduction algorithm. We organize LLL-reduction in segments of the basis. Our SLLL-bases approximate the successive minima of the lattice in nearly the same way as LLL-bases. For integer lattices of dimension n given by a basis of length 2, SLLL-reduction runs in O(n) bit operations for every ε > 0, compared to O(n) for the original LLL and to O(n) for the LLL-algorithms of Schnorr (1988) and Storjohann (1996). We present an even faster algorithm for SLLL-reduction via iterated subsegments running in O(n log n) arithmetic steps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Diagonal Reduction Algorithm Using Fast Givens

Recently, a new lattice basis reduction notion, called diagonal reduction, was proposed for lattice-reduction-aided detection (LRAD) of multiinput multioutput (MIMO) systems. In this paper, we improve the efficiency of the diagonal reduction algorithm by employing the fast Givens transformations. The technique of the fast Givens is applicable to a family of LLL-type lattice reduction methods to...

متن کامل

A Parallel Jacobi-type Lattice Basis Reduction Algorithm

This paper describes a parallel Jacobi method for lattice basis reduction and a GPU implementation using CUDA. Our experiments have shown that the parallel implementation is more than fifty times as fast as the serial counterpart, which is twice as fast as the well-known LLL lattice reduction algorithm.

متن کامل

LLL for ideal lattices: re-evaluation of the security of Gentry-Halevi's FHE scheme

The LLL algorithm, named after its inventors, Lenstra, Lenstra and Lovász, is one of themost popular lattice reduction algorithms in the literature. In this paper, we propose the first variant of LLL algorithm that is dedicated for ideal lattices, namely, the iLLL algorithm. Our iLLL algorithm takes advantage of the fact that within LLL procedures, previously reduced vectors can be re-used for ...

متن کامل

A GPU Implementation of a Jacobi Method for Lattice Basis Reduction

This paper describes a parallel Jacobi method for lattice basis reduction and a GPU implementation using CUDA. Our experiments have shown that the parallel implementation is more than fifty times as fast as the serial counterpart, which is about twice as fast as the well-known LLL lattice reduction algorithm.

متن کامل

Segment and Strong Segment LLL-Reduction of Lattice Bases

We present an efficient variant of LLL-reduction of lattice bases in the sense of Lenstra, Lenstra, Lovász [LLL82]. We organize LLL-reduction in segments of size k. Local LLL-reduction of segments is done using local coordinates of dimension 2k. Strong segment LLL-reduction yields bases of the same quality as LLL-reduction but the reduction is n-times faster for lattices of dimension n. We exte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Comput.

دوره 204  شماره 

صفحات  -

تاریخ انتشار 2006